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ABSTRACT

Entity alignment is commonly used to link different knowledge graphs
and augment facts about entities. The main objective is to identify the
counterpart of a source entity in the target knowledge graph. Although
the auxiliary information such as textual, visual, and temporal fea-
tures was leveraged to improve the entity alignment performance in the
past, the entity type information is rarely considered in existing entity
alignment models. In this paper, we demonstrate that the entity type
information, which is commonly available in knowledge graphs, is very
helpful to knowledge graph alignment and propose a new method called
the Type-associated Entity Alignment (TypeEA) accordingly. TypeEA
exploits the entity type information to guide entity alignment models so
that they can focus on entities with matching types. A type embedding
model based on semantic matching is developed in TypeEA to capture
the association between types in different knowledge graphs. Experimen-
tal results show that the proposed TypeEA consistently outperforms
state-of-the-art baselines across all OpenEA entity alignment datasets
with different experimental settings.

Keywords: Knowledge graph, entity alignment, type embeddings.

∗Corresponding author: Xiou Ge, xiouge@usc.edu.

Received 27 June 2022; Revised 08 November 2022
ISSN 2048-7703; DOI 10.1561/116.00000139
© 2023 X. Ge, Y. C. Wang, B. Wang and C.-C. Jay Kuo

http://creativecommons.org/licenses/by-nc/4.0/


2 Ge et al.

1 Introduction

The entity type offers an important piece of side information. It indicates
what class an entity belongs to. Besides, ontological structures between types
allow us to group entities together at different levels of granularity. Intuitively,
the entity type can improve the performance of entity alignment models since
we do not need to align entities of mismatched types.

We use an example in Figure 1 to illustrate the underlying idea. Suppose
“Home Alone” is the same entity to be aligned between DBpedia [1] and
Wikidata [20] KGs. In DBpedia, the entity “Home Alone” has type labels
such as “Creative Work”, “Movie”, etc. In Wikidata KG, entities with “Film”
type should be ranked higher than entities with “Actor” type or “Film director”
type, although these type labels are closely related concepts.

Figure 1: An Illustrative example of the idea behind the proposed TypeEA method.

After inspecting recent entity alignment models, we observe that a large
fraction of errors of the predicted entity alignment pairs have mismatched
types between entities. Since these predictions are unlikely to be the correct
ones, such errors can be avoided by taking type information into consideration.
We collect the statistics of the proportion of H@1 prediction errors due to
mismatched types for different entity alignment models in Table 1. Based
on the statistics, we could potentially reduce up to 30%–50% of the top 1
prediction errors when considering type information.

Prior to the deep learning era, type information has already been leveraged
for entity alignment. For instance, PBA [32] is a partition-and-blocking-based

Table 1: Proportion of H@1 prediction errors due to mismatched types by different entity
alignment methods for the D-W 15K V1 dataset.

Model MTransE JAPE BootEA MultiKE RDGCN
Ratio 45.240% 42.678% 40.884% 34.588% 57.038%
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alignment method that uses the type information as the blocking key. However,
since different KGs have disjoint sets of type labels, solving the type resolution
problem can be challenging. To address this problem, we propose a method
to train an embedding model to capture the type association, and call it
the Type-associated Entity Alignment (TypeEA) method. Seed alignments
allow us to generate some associated type pairs. Based on them, we can
train the TypeEA model to capture more associations. Hence, given the type
information of an entity in the source KG, instead of performing rule-based
blocking, we use the TypeEA model to identify its most relevant counterpart
in the target KG automatically. In this work, we first show that the bilinear
product embedding for the proposed TypeEA can capture the type association
well. For entity alignment, we make the alignment ranking and decisions by
considering the alignment score and the type association score jointly so that
TypeEA can better focus on entities with matched types.

The main contributions of this work can be summarized as follows.

• We present a simple and low memory cost embedding model to capture
the type association in different KGs and leverage this information to
improve the performance of the entity alignment model. We use far fewer
free parameters compared to complex models that use large pretrained
neural models such as EVA [6] and BERT-INI [18].

• We prepare a type pair dataset for DBP v1.1 by querying the DBpedia
English (EN), the DBpedia German (DE), the DBpedia French (FR),
the Wikidata, and the YAGO public endpoint KGs. A subset of entity
types is selected to learn high-quality type association embedding. The
dataset is released to facilitate future research.

• We conduct extensive experiments on all entity alignment datasets in
DBP v1.1, which contains cross-lingual and cross-KG alignment tasks.
we observe a consistent improvement when combining TypeEA with
different embedding-based entity alignment models.

2 Related Work

Entity alignment is a long-standing problem in KG research. Prior to embedding-
based models, traditional methods align entities using strategies such as string
similarity [10], schema similarity [11] and neighborhood similarity [5]. These
methods are hardly applicable when the textual and ontological information is
not uniform across different KGs.

Recently, several surveys on embedding-based entity alignment have been
published with comprehensive codebases and sampled datasets [4, 16, 26, 28,
29]. These codebases integrate different entity alignment models together
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so that fair performance comparison of different models on these datasets
can be carried out. Based on the entity embedding techniques, embedding-
based entity alignment models have two major categories [28]: Translation
embedding-based methods and Graph Neural Networks (GNN)-based methods.
They are reviewed below.

2.1 Translational-embedding-based Methods

MTransE [3], BootEA [15], JAPE [13], MultiKE [27], AttrE [19], and COT-
SAE [25] belong to this category. They use TransE [2] or a variant of TransE.
MTransE proposes several score functions for alignment, including distance-
based axis calibration, translation vectors, and linear transformations. BootEA
learns a classifier through bootstrapping using the negative log-likelihood loss.

Auxiliary features such as entity attributes have also been extensively
investigated. JAPE represents attribute features using the Skip-gram word
embedding. AttrE represents attribute values through different character
embedding aggregation strategies such as LSTM. MultiKE models the as-
sociation between entity embedding and attribute embedding using CNNs.
COTSAE uses a Pseudo Siamese Network to learn attribute predicate and
value embedding. Apart from attribute features, visual features [6] generated
from entity images using the ResNet is leveraged in EVA to overcome the
bottleneck of very few alignment seeds in training. In this work, we propose
to leverage the entity type features. Although a recent method, known as
JTMEA [7], also considered the entity type, it was benchmarked with a few
weaker and earlier baselines. We will demonstrate that the proposed TypeEA
model can outperform stronger baselines with the help of type features.

2.2 GNN-based Methods

It is also possible to use graph neural networks to learn representations of
entities. GCN-Align [21] uses graph convolutional networks (GCN) to embed
both the structural and attribute information of two KGs in a common space
with shared weight matrices. RDGCN [22] extends GCNs with highway
gates to capture the neighborhood information and includes the relation
information by the attentive interaction between a primal graph and a dual
graph. Graph attention networks (GATs) are also explored. For example,
NAEA [31] embedded the neighborhood information in addition to attribute
relations and attribute values. A time-aware GNN based model is proposed in
TEA-GNN [23] to handle the alignment of KGs with the temporal information.
According to [16], BootEA and RDGCN are the top performing models on
different tasks of the DBP v1.1 dataset. In this work, we add the type
information to these models and verify whether TypeEA can outperform
previous best models.
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In addition, researchers leverage the modeling capability of different neural
networks and design a hybrid framework. RoadEA [14] consists of an attribute
encoder and a relation encoder to aggregate entity attributes or relational
neighbors using attention mechanisms for entity representation. Adaptive
embedding fusion is achieved through a gated mechanism to unify the repre-
sentation space. EMGCN [8] is an unsupervised entity alignment framework
that captures the relation-based correlation between entities using a multi-
order GCN and incorporates the attribute-based correlation via a translation
machine. A late-fusion mechanism is used to combine the information together
to enhance the final alignment result.

3 The TypeEA Method

To perform entity alignment, the proposed TypeEA method consists of two
parts: (1) how to effectively train the type association embedding and (2)
how to select the subset of entity types to learn the representation. Then,
we integrate the trained type association embedding with the state-of-the-art
entity alignment models to correct the type mismatch problem in their models.

3.1 Problem Formulation

Let G = (E ,R,L, T ) denotes a knowledge graph where E , R, and L represents
a set of all entities, relations, and type labels, respectively. T denotes a set of
all relation triples {(h, r, t)|h, t ∈ E , r ∈ R}.

To align entities in two KGs, denoted by

G1 = (E1,R1,L1, T1), (1)
G2 = (E2,R2,L2, T2), (2)

we need to identify all pairs of equivalent entities

ψ = {(e1, e2)|e1 ∈ E1, e2 ∈ E2} (3)

from two KGs. Seed entity pairs are often given in entity alignment datasets.
Since entity type labels are available from KG queries, we can infer label pairs

ϕ = {(l1, l2)|l1 ∈ L1, l2 ∈ L2} (4)

from the entity pair set ψ. Our goal is to design embedding models to encode
the type information and investigate whether the type embedding can improve
the entity alignment performance.
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3.2 Type Acquisition

One contribution of this work is to add the type label information of entities to
existing datasets. The DBpedia (EN) KG has the most abundant type labels
for each entity. However, there are two challenges in choosing an appropriate
subset of type labels for modeling. First, many of the type labels are acquired
from different sources and are often redundant. Second, a large number of
type labels are too fine-grained. With a limited amount of seed entity pairs, it
is difficult to generate enough type label pairs to train type embedding well.
To solve this problem, we obtain non-overlapping subsets of types and their
association pairs for both source and target KGs. Details on type information
acquisition are discussed in Section 4.1. We train and evaluate the type
association embedding using the type pairs dataset.

3.3 Type Association Embedding

The goal of training the type association embedding is to model the relationship
between type labels from two KGs. Since the type sets for two KGs are disjoint,
we essentially use the type association embedding to align the types from two
KGs before aligning the entities. Source and target entities whose type labels
can generate higher type association scores are more likely to be aligned. To
model the type association, we adopt two scoring functions: (1) the cosine
similarity and (2) the bilinear product.

Cosine Similarity. We first experiment with the cosine similarity as the
score function to capture the association between types. This can be written
in form of

ftype(u, v) = cos(u,v) =
uTv

∥u∥∥v∥
, (5)

where u and v denote two types associated with two different KGs. The use
of the cosine similarity score function is intuitive since the goal is to have
entity types that frequently appear in a type pair to have higher scores while
those pairs that never appear before have lower scores. However, the cosine
similarity score does not generate satisfactory results in retrieving the most
relevant types in practice. We perform experiments on type label pairs for
D-W 15K V1/V2 dataset and show the results in Table 3.

Bilinear Product. Since the cosine similarity measure is not effective in
modeling the relationship between types, we propose a more expressive bilinear
product score function to model type association. Figure 2 provides an
illustration for the logic behind the proposed scoring function. The semantic-
matching-based score is defined as

ftype(u, v) = uTWv, (6)
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Figure 2: Illustration of using the type association embedding for identifying relevant
candidates in entity alignment, where u and v denote two type embeddings in two KGs,
respectively, and W denotes their association embedding using the bilinear product.

where u and v denote the type of one KG1 entity and the type of one KG2 entity,
respectively. Also, u ∈ Rm and v ∈ Rn denote the learnable representations of
u and v in the type space, respectively. Similar to RESCAL [9] and DistMult
[24], we construct a learnable embedding matrix, W ∈ Rm×n, which is shared
among all type pairs. Both the type embedding and the shared weight matrix
are uniformly initialized.

We find that the self-adversarial negative sampling strategies introduced in
RotatE [17] are particularly useful in learning the type association embedding
parameters. The objective function in learning these parameters is set to

OT =− log σ(ftype(u, v)− γ)−
n∑

i=1

p(u, v′i) log σ(ftype(u, v
′
i)− γ), (7)

where γ is a fixed margin hyper-parameter, (u, v′i) is the i-th negative type
pair, and p(u, v′i) is the probability of drawing negative type pair (u, v′i). Given
a corrupted type pair (u, v′i), the sampling distribution can be written as

p(u, v′j |{(u, vi)}) =
expαftype(u, v

′
j)∑

i expαftype(u, v′i)
. (8)

This self-adversarial negative sampling scheme has two advantages. First,
hard negative samples are more likely to be chosen for training. The embedding
model can be fine-tuned more effectively by hard negative examples than easy
negative samples. Second, since hard negative samples carry a higher weight
in the objective function, their loss is given more attention in optimization.
The performance on predicting the associated type pairs for various datasets
is given in Table 3.
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3.4 Entity Representation and Alignment

We experiment on three model types with different feature representations
below.

Translation Embedding. Translation-based EA techniques mainly use the
translation embedding model to extract structural features for entities and
relations. The well known TransE scoring function is defined as

ftriple(h, r, t) = ∥h + r − t∥, (9)

where h, r, t are the low dimensional space representation for the head entity,
the relation, and the tail entity of a triple, respectively. To pull entity vectors
from KG1 and KG2 into a unified space, we generate new triples by swapping
aligned entities in the corresponding triples. For example, given an aligned
entity pair (e1, e2), where e1 and e2 comes from KG1 and KG2 respectively,
we can generate the following set of triples:

TGen = {(e2, r, t)|(e1, r, t) ∈ T1} ∪ {(h, r, e2)|(h, r, e1) ∈ T1}
∪ {(e2, r, t)|(e1, r, t) ∈ T2} ∪ {(h, r, e2)|(h, r, e1) ∈ T2}.

(10)

Moreover, instead of using the max-margin loss function adopted by the
original TransE model, we use the limit-based loss function [30] to optimize
the embedding. The loss function can be expressed as:

Oe =
∑

(h,r,t)∈Tr

max(0, [ftriple(h, r, t)− γ1])+

β1
∑

(h′,r′,t′)∈T ′
r

max(0, [γ2 − ftriple(h
′, r′, t′)]),

(11)

where Tr = T1 ∪ T2 ∪ TGen, and T ′
r contains all corrupted triples generated by

uniform negative sampling. Based on the learned entity representation, an
alignment module is further proposed and trained to identify the counterpart
of a target entity in the other KG. Among different alignment modules,
Bootstrapping [15] is one of the best performing strategy. In our experiment,
we also include the Bootstrapping strategy to facilitate the alignment. In
particular, we minimize the following cross-entropy objective:

Oa = −
∑
e1∈E1

∑
e2∈E2

1e1(e2) log π(e2|e1; Θ), (12)

where 1e1(e2) is a indicator function that denotes the labeling probability
of entity e1 and π(e2|e1; Θ) is the function that computes the likelihood of
labeling the counterpart of entity e1 as e2, given embedding parameters Θ
obtained from TransE. In our experiment, the cosine similarity is used as
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the similarity function. The alignment decision is made using the following
function

falign(ei, ej) ∝ π(e2|e1; Θ) = cos(ei, ej). (13)

Attribute Auxiliary Features. In this line of work, auxiliary features such
as textual information from entity names and numeric attributes from entity
property laterals such as “date”, “age” are leveraged to improve entity alignment
performance. These auxiliary features were not considered in learning the
structural embedding. Yet, they provide important information for identifying
matching entities. In our experiments, we choose MultiKE [27], which uses
auxiliary features, as one of our baselines and verify if our type association
method can improve the performance of MultiKE. In the baseline, pre-trained
word and character embeddings are used to encode entity names. To model
the attribute-value information, separate embedding matrices are trained for
attribute labels and values, respectively. To learn the attribute label and value
embedding, we use the following scoring function

f(e, a, v) = ∥e − CNN([a∥v])∥, (14)

where e, a, v represent entity, attribute label, and attribute value, respectively,
in a attribute lateral triple. [a∥v] denotes the concatenation of attribute label
and attribute value vectors. The concatenated feature vector is passed into
a Convolutional Neural Network (CNN) and the error between the resulting
vector and the entity vector e is minimized. We use the logistic based objective
function to optimize the model

Ov =
∑

(e,a,v)∈Tv

log(1 + exp(f(e, a, v))), (15)

where Tv is a set of all attribute triples. The obtained structural, textual,
and attribute embeddings are combined to form the representation of entities.
Alignment inferences are performed through nearest neighbor search.

Graph Neural Networks. Another approach is to use graph convolutional
networks (GCNs) to represent the entity. The message passing process in
GCNs can be formulated as

H(l+1) = σ(D̃
− 1

2 ÃD̃
− 1

2 H(l)W(l)), (16)

where Ã = A+ I is the adjacency matrix of the graph, I is the identity matrix
that denotes the self connection, D̃ is a diagonal matrix of node degrees where
D̃ii =

∑
j Ãij , W(l) is the weight matrix at the l-th layer to be optimized,

and H(l) is the node embedding at the l-th layer. The particular variant of the
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GCN-based approach adopted as a baseline in our experiment is the RDGCN
[22]. RDGCN uses a coupled GCN to incorporate the relation information
through attentive interactions between the original graph and its dual relation
graph. A max-margin loss is used to optimize the model. We can obtain the
vector representation of each node from the output layer of the RDGCN and
compute the alignment score as

falign(ei, ej) ∝ 1− ∥ei − ej∥. (17)

3.5 Inference

During inference, we take both the type score and the alignment score into
account. Suppose ei is the source entity. To infer the matching target entity,
ej , we choose the entity that maximizes the linear combination of the type
score and the alignment score. Mathematically, we have

êj =argmaxej∈Eλ · ftype(L(ei), L(ej))

+ (1− λ) · falign(ei, ej),
(18)

where λ ∈ [0, 1] is the balancing parameter, and L(·) is a type label lookup
function for the entity.

4 Experiments

4.1 Datasets

We perform experiments on the DBP v1.1 entity alignment datasets from Sun
et al. [16] that includes both cross-KB and cross-lingual settings. To be specific,
under the cross-KB setting, there are D-W and D-Y which denote DBpedia-
Wikidata and DBpedia-YAGO, respectively. Under the cross-lingual settings,
there are EN-FR and EN-DE which denote DBpedia English-DBpedia French
and DBpedia English-DBepdia German, respectively. For each of the above
tasks, there are also variants with different size: 15 k and 100 k, and variants of
sparse (V1) and dense (V2) subgraphs. These datasets were generated using a
method called iterative degree-based sampling (IDS). The detailed statistics
of the DBP v1.1 dataset can be found in the original paper by Sun et al. [16].

We obtain the type data by querying the DBpedia1 [1], Wikidata2 [20], and
YAGO3 [12] public endpoint using SPARQL queries. From all the type labels
obtained from queries, we select a subset of type labels in order to get reliable
type embedding. For example, to make the alignment between DBpedia and

1https://dbpedia.org/sparql
2https://query.wikidata.org/
3https://yago-knowledge.org/sparql

https://dbpedia.org/sparql
https://query.wikidata.org/
https://yago-knowledge.org/sparql
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Wikidata, we only use type labels that have “http://www.wikidata.org/” prefix
and filter out other type labels. For DBpedia to YAGO alignment, we use only
type labels with “http://dbpedia.org/” prefix. For DBpedia EN to DE and EN
to FR, we use labels with prefixes “http://schema.org/”, “http://dbpedia.org/
ontology”, “http://de.dbpedia.org/”, and “http://fr.dbpedia.org/”. Statistics
of the type pair datasets are shown in Table 2. Specifically, the Train, Valid,
and Test columns indicate the number of type pairs in training, validation, and
testing sets, respectively. The KG1 and KG2 columns indicate the number
of distinct type in KG1 and KG2 respectively.

4.2 Implementation Details

Model Configuration. We set the type embedding dimension m = 200 and
n = 200 for the source and target KGs respectively, and the type pair batch
size is set to 4096. To train type embedding, we use the Adam optimizer with
the learning rate η = 1e − 4. We set the batch size to 1024, the number of
negative sample to 256, the sampling temperature α = 1, the margin parameter
γ = 24. The parameter of entity alignment baseline models are kept the same
as provided in OpenEA [16]. We use a server with Intel(R) Xeon(R) E5-2620
CPU and Nvidia Quadro M6000 GPU to run all of our experiments.

Evaluation Metrics. Following the convention, we use Hits@k and Mean
Reciprocal Rank (MRR) as our evaluation metrics to evaluate the performance
of both type association embedding and the entity alignment models. Hits@k
is the proportion of ground truth entity appears in the top-k candidate list.
Higher Hits@k and MRR imply better performance of the model. To evaluate
the performance of type association embedding, we also include the Mean
Rank (MR) metric.

Baselines. To evaluate the performance improvement contributed by TypeEA,
we compare it with 7 highly-cited strong baseline models. According to the
results in Sun et al. [16], BootEA [15], MultiKE [27] and RDGCN [22] are the
top performers across different datasets settings in DBP v1.1.

4.3 Results

Type Association Embedding. As shown in Table 3, our proposed bilinear
product type embedding model consistently achieves good results of predicting
the associated types in the target KG across all the datasets and settings. The
Hits@k scores are all above 90 and the MRR scores are all above 0.9. This
means that our proposed model can predict most relevant associated types
accurately and reliably. The bilinear product score is more effective than
the cosine similarity score. One possible reason behind it is that the shared

http://www.wikidata.org/
http://dbpedia.org/
http://schema.org/
http://dbpedia.org/ontology
http://dbpedia.org/ontology
http://de.dbpedia.org/
http://fr.dbpedia.org/
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embedding matrix W ∈ Rm×n has more modeling power and improves the
expressiveness of the model.

Entity Alignment. Tables 5, 6, and 7 present a comprehensive performance
comparison of our proposed TypeEA with previous best baseline models for
both cross-KG (D-W) and cross-lingual (EN-FR) EA datasets, for both small
(15k) and large (100k) subgraphs, and under both sparse (V1) and dense
(V2) sampling settings. In particular, TypeEA-B, TypeEA-R, and TypeEA-M
denote the results generated from applying type association embedding to
baseline model BootEA, RDGCN, and MultiKE respectively. We use the
given split where the train, valid, and test set have 20%, 10%, and 70% of
entity pairs respectively. We observe consistent performance improvement as
compared to previous results. Among all, the most performance improvement
is observed for EN-FR 15K V1 and EN-FR 15K V2 datasets where the Hit@1
scores are improved by 4.16 and 4.44 respectively.

Figure 3: Comparison of the H@1 entity alignment performance with or without the type
information for different datasets and models as a function of the fraction of seed alignment.
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Table 4 shows an entity alignment example from D-Y 15K V1 dataset
comparing the ranking of candidate entities. In this example, the source entity
in DBpedia is “Ed. Weinberger” and we are trying to find its counterpart in
YAGO. Without using the type information, the baseline model BootEA makes
a few erroneous predictions in the top candidate list. Among the incorrect
predictions, many have mismatched types such as “TV Series”, “Movie” and
they are not the matching candidate that we are looking for. The ground-truth
target has relatively low ranks. After applying the type information, entities
with wrong type labels are ranked lower in the predictions. This confirms our
intuition that predicting entities with mismatched type is indeed a problem
of the baseline models. With the help of type association embedding, the
ground-truth target can be ranked higher in the final alignment predictions.

In Figure 3, we show plots of entity alignment accuracy as a function of
alignment seed fraction. We conduct experiments when the fraction of seed is
{0.1, 0.2, 0.3, 0.4} respectively and observe consistent improvement even if only

Figure 4: Comparison of the H@1 entity alignment performance with or without the type
information for different datasets and models as a function of the fraction of seed alignment.
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10% of alignment seeds are provided. When we have more alignment seeds, the
advantage of adding the type information seems to diminish perhaps because
the entity alignment models are making fewer mistakes that can be corrected
using type information when predicting the counterpart of a target entity.

In Figure 4, we compare the fraction of H@1 prediction errors due to
mismatched type labels for three baseline models: BootEA, MultiKE, RDGCN.
In particular, we run experiments on D-W 15K V1 (Figure 4 (a) and (b)) and
EN-FR 15K V1 (Figure 4 (c) and (d)) dataset. We show the error reduction for
alignment for both directions: from KG1 to KG2 and from KG2 to KG1. We
observe that our TypeEA approach is effective in reducing the error for all three
baseline models. Largest reduction is observed for the RDGCN baseline, per-
haps because RDGCN makes the highest percentage of type mismatch errors.

5 Conclusion and Future Work

In this paper, we present a new approach called Type-Associated Entity Align-
ment (TypeEA) for helping entity alignment model decisions. We experiment
with different scoring functions for modeling TypeEA and find that the bilinear
product is the best for capturing the type association. We also employ the
self-adversarial negative sampling strategy which is very effective in learning
the embedding. We integrate type associated embedding with entity alignment
models and demonstrate better alignment performance on DBP v1.1 dataset.
Moreover, we collect and prepare entity type label pairs datasets complemen-
tary to all sub-datasets of DBP v1.1 so that the type association embedding
can be learned. One limitation of our work is that the subset of types is still
heuristically selected for training reliable type association embedding. In the
future, we will further investigate how to use embedding to model more diverse
entity types and a more complex relationship in entity type pairs.

Table 2: The statistics of type association pairs for various datasets.

V1 (Sparse) V2 (Dense)
Dataset Train Valid Test KG1 KG2 Train Valid Test KG1 KG2
D-W 15K 2,609 1,328 9,273 101 1,185 2,696 1,350 9,435 51 563
D-W 100K 17,313 8,680 60,844 163 3,883 17,995 8,915 62,620 104 2,682
D-Y 15K 2,884 1,437 10,062 387 407 2,903 1,472 10,178 178 75
D-Y 100K 19,138 9,532 66,777 1,117 1,306 19,162 9,565 66,961 690 791
EN-DE 15K 2,884 1,455 10,189 497 103 2,877 1,452 10,176 284 53
EN-DE 100K 19,466 9,777 68,257 1619 149 19,386 9,705 68,005 1,179 109
EN-FR 15K 2,511 1,246 8,799 565 208 2,594 1,302 9,166 340 115
EN-FR 100K 16,090 8,003 56,236 1,757 335 16,660 8,259 58,199 1,422 290
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Table 3: Ranking of associated type pair prediction.

V1 (Sparse) V2 (Dense)
Dataset MRR MR H@1 H@3 H@10 MRR MR H@1 H@3 H@10
D-W 15K (cos) 0.312 42.38 0 50.39 86.14 0.368 67.47 2.35 56.68 91.73

D-W 15K 0.915 55.14 91.44 91.52 91.63 0.957 13.96 95.68 95.68 95.71
D-W 100K 0.953 97.50 95.31 95.33 95.34 0.970 41.65 97.01 97.03 97.05
D-Y 15K 0.944 17.21 94.16 94.44 94.97 0.985 2.15 98.26 98.85 98.94
D-Y 100K 0.966 29.22 96.54 96.61 96.79 0.981 10.25 98.03 98.10 98.22
EN-DE 15K 0.957 6.52 95.26 95.72 96.67 0.978 2.29 97.58 97.90 98.54
EN-DE 100K 0.977 13.48 97.54 97.73 98.11 0.983 6.13 98.16 98.34 98.68
EN-FR 15K 0.930 18.28 92.62 93.08 93.75 0.964 5.76 96.05 96.41 97.04
EN-FR 100K 0.962 23.90 95.90 96.24 96.85 0.969 16.71 96.71 96.98 97.40
Note: The first row shows the results of preliminary experiments using the cosine similarity score
function while results in all other rows are generated using the bilinear product score.

Table 4: An example from D-Y 15K V1 illustrating the advantage of using type for alignment.

w/o Type w Type
Rank Entity Type Entity Type
1 Chris Hayward Human Chris Hayward Human
2 Lou Grant (TV series) TV Series Lou Grant N/A
3 Lou Grant N/A James Coco Human
4 The Munsters TV Series Ed. Weinberger Human
5 Mr. Smith (TV series) TV Series Carol Sobieski Human
6 The Toy (1982 film) Movie Teresa Ganzel Human
. . . . . . . . .
10 Ed. Weinberger Human Ernest Kinoy Human
Note: The source entity Ed. Weinberger has type label in DBpedia. The target entities
candidates together with their corresponding types in YAGO knowledge graph are listed by their
ranks.

Table 5: Comparison of entity alignment performance of TypeEA with baselines for cross-KG
(DBpedia to Wikidata) alignment with 15k entities.

D-W 15K V1 D-W 15K V2
Models MRR H@1 H@5 MRR H@1 H@5
MTransE 0.352 25.45 46.03 0.365 25.84 48.03
JAPE 0.339 24.32 44.42 0.364 25.71 48.06
GCNAlign 0.467 37.33 58.26 0.618 51.27 74.95
AttrE 0.383 30.18 46.91 0.586 48.99 69.32
BootEA 0.655 57.8 75.01 0.87 82.22 92.45
RDGCN 0.587 51.83 67.26 0.678 61.71 75.36
MultiKE 0.483 42.27 54.30 0.574 50.08 64.86
TypeEA-B 0.681 60.79 77.05 0.889 83.04 94.01
TypeEA-R 0.656 59.04 73.80 0.729 66.75 80.91
TypeEA-M 0.522 45.53 58.85 0.612 53.41 70.26
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Table 6: Comparison of entity alignment performance of TypeEA with baselines for cross-
lingual (English to French) alignment with 15k entities.

EN-FR 15K V1 EN-FR 15K V2
Models MRR H@1 H@5 MRR H@1 H@5
MTransE 0.35 24.6 46.67 0.34 24.47 44.04
JAPE 0.374 26.66 49.96 0.404 29.44 52.65
GCNAlign 0.446 33.45 57.91 0.545 41.89 70.17
AttrE 0.558 46.90 66.05 0.651 55.61 76.71
BootEA 0.597 50.31 71.02 0.747 66.13 85.41
RDGCN 0.799 75.45 85.25 0.881 84.84 91.87
MultiKE 0.776 74.2 81.26 0.884 86.13 90.85
TypeEA-B 0.643 54.28 76.91 0.909 88.21 93.93
TypeEA-R 0.832 79.44 87.91 0.930 90.57 95.91
TypeEA-M 0.827 79.61 86.08 0.908 89.07 92.91

Table 7: Comparison of entity alignment performance of TypeEA with baselines for cross-
lingual (English to French) alignment with 100k entities.

EN-FR 100K V1 EN-FR 100K V2
Models MRR H@1 H@5 MRR H@1 H@5
MTransE 0.203 13.74 26.46 0.131 8.60 16.95
JAPE 0.243 16.92 31.20 0.183 12.35 23.94
GCNAlign 0.321 23.14 41.33 0.351 25.76 45.21
AttrE 0.509 42.96 59.73 0.541 45.70 63.59
BootEA 0.475 39.03 56.30 0.715 63.97 80.52
RDGCN 0.682 63.81 72.96 0.751 71.77 79.03
MultiKE 0.654 62.85 67.94 0.669 64.21 69.52
TypeEA-B 0.483 40.65 58.21 0.722 65.56 82.42
TypeEA-R 0.689 65.65 74.51 0.758 73.62 80.57
TypeEA-M 0.701 67.52 72.84 0.701 67.38 72.85
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