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Abstract. Knowledge graph entity typing (KGET) is a task to predict
the missing entity types in knowledge graphs (KG). Previously, KG
embedding (KGE) methods tried to solve the KGET task by introduc-
ing an auxiliary relation, ‘hasType’, to model the relationship between
entities and their types. However, a single auxiliary relation has lim-
ited expressiveness for diverse entity-type patterns. We improve the
expressiveness of KGE methods by introducing multiple auxiliary
relations in this work. Similar entity types are grouped to reduce the
number of auxiliary relations and improve their capability to model
entity-type patterns with different granularities. With the presence
of multiple auxiliary relations, we propose a method adopting an
Asynchronous learning scheme for Entity Typing, named AsyncET,
which updates the entity and type embeddings alternatively to keep the
learned entity embedding up-to-date and informative for entity type
prediction. Experiments are conducted on two commonly used KGET
datasets to show that the performance of KGE methods on the KGET
task can be substantially improved by the proposed multiple auxiliary
relations and asynchronous embedding learning. Furthermore, our
method has a significant advantage over state-of-the-art methods in
model sizes and time complexity.

1 Introduction

Knowledge graph (KG) stores human-readable knowledge in a graph-
structured format, where nodes and edges denote entities and relations,
respectively. There are multiple relation types in KGs to describe
the relationship between two entities. A (head entity, relation, tail
entity) factual triple is a basic component in KGs. In addition to
different relation types, each entity also comes with multiple types
to describe the high-level abstractions of an entity'. Fig. 1 shows
an example KG containing entity type information. As shown in the
figure, each entity can be labeled with multiple types. For example,
the entity “Mark Twain” has types “writer” and “lecturer” at the
same time. Entity types are crucial in several artificial intelligence
(AI) and natural language processing (NLP) applications, such as
drug discovery [11], entity alignment, [23, 8], and entity linking
[5]. In real-world applications, entity types could be missing, e.g.
having type “writer” without type “person”, due to prediction errors
from information extraction models [24, 25]. Such missing types can
be inferred from the existing information in KG. For example, in
Fig. 1, we can infer that “Mark Twain” has a missing type “person”
given that there is a known type “writer” and the relation “born in”.
Thus, knowledge graph entity typing (KGET) is a task to predict the

1 We refer to “entity type" when using the term “type" in the remainder of this
paper.
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Figure 1: An example KG with missing entity types.

missing types based on the observed types and triples in the KGs.
KGET methods can serve as refinement mechanisms for real-world
knowledge bases.

Knowledge graph embedding (KGE) methods achieve great suc-
cess in predicting missing triples in KGs [9], and they are extended to
solve the KGET task in [15]. Since the type labels are stored in the
format of tuples (entity, type), an auxiliary relation, hasType, is first
introduced to convert the typing tuples into triples (entity, hasType,
type), and, then, a KGE method [14] is adopted to predict missing
types. Although such a method is time- and parameter-efficient, it
does not perform well since the relationship between entities and types
is too diverse to be modeled by a single relation. In addition, such a
method does not consider the neighborhood information. This affects
the performance of entity type prediction as well. Other methods are
proposed to improve the model’s expressiveness. Embedding-based
methods, such as ConnectE [26], first learn embeddings for entities
and types separately using KGE methods. Then, a linear projection
matrix is learned to minimize the distance between the entity and the
type spaces. Another work leverages multi-relational graph convolu-
tion networks (R-GCN) [18] to encode the neighborhood information
into entity embeddings. Attention mechanism is also explored in [27]
to control the contributions of neighbors when predicting an entity
type. Afterward, multi-layer perceptrons (MLPs) are cascaded to pre-
dict the entity types based on the learned entity embeddings. The
KGET task is therefore formulated as a multi-label classification prob-
lem. Although GCN-based methods offer superior performance, they
are not applicable in a resource-constrained environment, such as
mobile/edge devices and real-time prediction [10], due to their high
inference time complexity and large model sizes. In addition, training
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Figure 2: Illustration of using multiple auxiliary relations to model the
relationship between entities and entity types.

GCNs could be time- and memory-consuming. Their applicability
to large-scale KGs is challenging. It is desired to develop a KGET
method of low inference time complexity, small model sizes, and
good performance. This is the objective of this work.

As argued above, a single auxiliary relation is not sufficient to
model the relationship between entities and types. Here, we introduce
more auxiliary relations to improve the expressiveness of KGE mod-
els on the entity-type prediction task. This idea is illustrated in Fig.
2, where we show an example of using multiple auxiliary relations
to model the entity-type relationship. It is intuitive that we should
use different auxiliary relations to model typing relationship for type
“administrative district” and type “person” since they describe two
different concepts of entities. Similarly, type “writer” and type “soc-
cer player” should adopt different auxiliary relations since they are
semantically different. They should not be close to each other in the
embedding space. On the other hand, for other types, such as “writer”
and “lecturer”, they co-occur with each other more frequently. Thus,
they can adopt the same auxiliary relation for model simplicity.

Along this direction, we introduce multiple auxiliary relations based
on the “context” of types. The context of a type is defined as a col-
lection of attributes of its entities. It can be viewed as a discrete rep-
resentation of the type. As such, the local KG structure is implicitly
encoded when auxiliary relations are used. Next, we propose a method
adopting an Asynchronous learning scheme for Entity Typing, named
AsyncET, to obtain better embeddings for entities and types for the
entity type prediction task. The training process consists of two stages:
1) link prediction, and 2) type prediction. Entity embeddings are first
optimized by training with only factual triples to predict missing links.
Then, the typing information is used to train type embeddings and
fine-tune entity embeddings by predicting missing types. Two training
stages alternate as the training progresses. The asynchronous training
schema keeps the learned entity embedding up-to-date and informa-
tive for entity type prediction. Experiments conducted on two KGET
datasets demonstrate that the performance of the KGET task can be
substantially improved by the proposed multiple auxiliary relations
and asynchronous training framework. Furthermore, AsyncET has
a significant advantage over existing KGET methods in model sizes
and time complexity.

The main contributions of this paper are summarized below.

e We introduce a novel strategy, called multiple auxiliary relations,
to model relationships between entities and types.

e We propose a new asynchronous embedding learning framework,
named AsyncET, to obtain better entity and type embeddings for
the KGET task.

e AsyncET can improve the performance of KGE models on the
KGET task substantially while being more efficient in inference
time and model size.

2 Related Work
2.1 Embedding-based Methods

KGE methods rely on an auxiliary relation, hasType, to form typing
triples (entity, hasType, type) so as to solve the KGET task. Syn-
chronous training is often adopted to mix the factual triples and typing
triples when training embeddings. Such methods have advantages in
inference and model parameter efficiency. However, the performance
is difficult to improve due to overly simplifying the relationship be-
tween entities and types. Other embedding-based methods tend to
learn an entity space and a type space separately. Then, a mapping be-
tween two vector spaces is learned to predict the missing connections
between entities and types. ETE [15] tried to minimize the distance
between the learned entity and type space through the L1-norm. Con-
nectE [26] adopts a linear projection matrix to connect entity and type
embedding spaces. JOIE [6] proposes two training objectives, cross-
view grouping and cross-view transformation, to make sure entities
with similar types are embedded closely. TransC [12] encodes entities
and types in the same embedding space as high-dimensional balls.
Several constraints are imposed to maintain the hierarchy among en-
tity types. CORE [3] learns KGE in a complex subspace [19, 20] for
entities and types individually. Then, a linear regression problem is
solved to link entities with their corresponding types. Although the
embedding-based methods generally contain fewer model parameters
and have lower inference time, their performance highly depends
on the expressiveness of the model used to describe the entity-type
relations.

2.2 Deep Neural Network Methods

The neighborhood information is important in the KGET task since
the types of an entity can often be determined by the neighboring
entities and types. Following this line of thought, multi-relational
GCNs [18, 28, 21] are proposed for the KGET task. First, entity
embeddings are aggregated from the neighboring entities and types
in GCNs. Then, multi-layer perceptrons (MLPs) are used to predict
missing entity types by solving a multi-label classification problem.
Since not all neighbors contribute to entity type prediction equally,
an attention mechanism has been used to achieve better performance
in recent work. For example, ConnectE-MRGAT [27] adopts graph
attention networks (GATSs) [22, 16] to solve the KGET task. CET [17]
uses two attention mechanisms (i.e., N2T and Agg2T) to aggregate the
neighborhood information. AttET [29] adopt a type-specific attention
mechanism to improve the quality of entity embeddings. TET [7]
uses a transformer as the entity encoder to aggregate the neighboring
information. Although deep neural network methods can achieve
superior performance, their inference complexity and model sizes are
much larger than those of embedding-based methods.

3 Methodology
3.1 Notations

We use G to denote a KG containing a collection of factual triples;
namely,

g _ {(6head7r, eta/il) ‘ ehead7€tail c E,T c R}, (1)



where £ and R represent sets of entities and relations in the KG,
respectively. The type information is denoted as

IT={(e,t)|ec&teT}, @

where 7T is a set of entity types in the KG. In order to group similar
types based on the attributes of their associated entities, we define the
context of type ¢ as a collection of relations that co-occur with entities
of type t

Co={r| (" re"") € G, (" t) € T}. ©)

For example, the context of type person is { Born in, Lives in, Plays
for, ... }. It contains all attributes an entity of type person can have.
The context of type ¢ can be seen as a discrete representation for ¢
that encodes the local structure of the KG.

3.2 Auxiliary Relations

Previous KGE models have only one auxiliary relation - hasType.
They convert a typing tuple, (e, t), into a typing triple, (e, hasType, t).
However, a single relation is not sufficient to model diverse entity-type
patterns. Here, we aim to find a mapping such that, given entity type
t, an auxiliary relation p = Aux(¢) is assigned to form new typing
triples (e, p,t), where t € T, p € P, and P denotes a set of auxiliary
relations in the KG. The objective is to maximize the capabilities
of auxiliary relations to model every entity-type relationship. We
compare three methods for the design of auxiliary relations below.

Bijective assignment. A straightforward solution to enhance the
expressiveness of auxiliary relations is to assign a unique auxiliary
relation to each type, called the bijective assignment. It can model
diverse typing patterns well by exhaustively modeling every possible
typing pattern in the KG. However, when the KG contains a large
number of types, this assignment has several shortcomings. First,
the model optimization is less stable since the number of model
parameters increases significantly. Second, it is too fine-grained to
perform well on the test dataset. Third, its inference time is much
longer. Therefore, it is essential to group similar types and assigns
auxiliary relations to each group of types.

Taxonomy-based assignment. Taxonomy is a hierarchical orga-
nization of concepts in KGs. For example, type “/film/producer” in
Freebase [1] is a type under category “film" with the subcategory “pro-
ducer". To group types based on the taxonomy, we can group them
based on the first layer of the taxonomy. For instance, “/film/producer”
will belong to the “film" group, and “/sports/sports_team" will be-
long to the “sports" group. However, such a taxonomy might not be
available for some KGs, say, YAGO subsets [13]. Furthermore, the
first-layer-taxonomy-based assignment may not have enough gran-
ularity for some types. To address these issues, we propose a new
assignment method below.

Efficient assignment. To strike a balance between a small number
of auxiliary relations, | P|, and high expressiveness of entity-type mod-
eling, we maximize similarities among the types in the same group
and minimize similarities among different groups. Mathematically,
we adopt the Jaccard similarity between the type contexts to define
similarities between types. It can be written in the form of

_ |Ct ﬂCt/|

im(t,t') = ———1.
Sim(t,t") C,UCh]

(C))

Then, based on the well-defined similarity function between types,
grouping similar types with the minimum number of groups can be
formulated as a min-max optimization problem. Such an optimization

Algorithm 1 Find anchors for efficient auxiliary relation assignment

Initialization:
The uncovered relations in the KG: U/ = R
The set of existing anchor types: A = &
Iteration:
while U/ # @ do
t = argmax, . |C; NU|
U+ U\C
A+— AU{t}
end while

problem is NP-Hard. Here, we develop a greedy algorithm to find an
approximate optimal assignment as elaborated in the following. First,
we identify several anchor types to be the centroid of each group. Ini-
tially, the anchor type set is empty, and all types are not covered. The
method iteratively selects the type, which has not yet been selected,
with the largest intersection of context and the uncovered relations
|C: NU| as a new anchor. The iteration ends when the union of all
anchors’ contexts is equal to R. The process of finding anchor types is
depicted in Algorithm 1. Then, we assign a unique auxiliary relation
to each anchor type. The non-anchor types will find their most similar
anchor types and share the same auxiliary relations with the anchor
type.

To verify whether the proposed algorithm can generate reasonable
results, we show examples of the grouped entity types in Table 1. We
see from the table that auxiliary relation # 2 is assigned to types of
persons who work in the entertainment industry, auxiliary relation
# 20 is assigned to types that are mostly sports teams, and auxiliary
relation # 27 is assigned to geographical locations. Similar types
are successfully grouped together while types of distant semantic
meanings are separated.

Table 1: Examples of auxiliary relations and the corresponding entity
types using the proposed efficient assignment, where anchor types are
marked in boldface.

Auxiliary Relation  Entity Types

/film/producer
/TV/tv_director

/film/writer
/film/film_story_contributor

#2

/sports/sports_team
/soccer/football_team
/baseball/baseball_team
/sports/school_sports_team

#20

/location/administrative_division
/film/film_location
/fictional_universe/fictional_setting
/location/citytown

#27

3.3 AsyncET: Asynchronous Embedding Learning for
Knowledge Graph Entity Typing

After auxiliary relations are defined, typing tuples (e, ¢) can be con-
verted into typing triples (e, p, t). Such typing triples form a typing
graph

TG = {(e.p.) | (est) € T,p = Aua(t)}. 5)



Initialization

Link prediction

Qerevan)
St. Louis Universit;
- e

e
Qstate in U.Q
—— administrative university

Entity type prediction

S
Will John

Figure 3: A diagram of the training process in AsyncET.

Instead of mixing the original triples and the newly-constructed typing
triples together in embedding learning, we optimize the entity and
type embeddings on the original KG G and the typing graph 7 G alter-
natively. That is, the embedding learning process is divided into two
stages. In stage 1, the entity embeddings are trained on G using a link
prediction task. The learned entity embeddings serve as an initializa-
tion for embedding learning in stage 2, where we use the typing graph
TG to learn type embeddings and fine-tune entity embeddings with
typing triples. The two training stages are optimized alternatively. Fig.
3 illustrates the training process of asynchronous embedding learning.
Details of each training stage are elaborated below.

Stage 1: Link prediction. The goal of this stage is to obtain a
good initialization of entity embeddings that can be used to predict
the missing types. We follow the training loss in [19] with the self-
adversarial negative sampling. The link prediction loss is defined
as

Lip = —log(o(f(e"**,r, ™))

- Zp(e;aT7 6;,) IOg(U(_f(egv’I’?e;,)))a (6)
=1

where (e}, 7, e) is the negative samples generated by corrupting the
head and tail entities, f(e"°*?, 1, e***) is the scoring function in the
KGE model, and e"*%¢ r, e**% are embeddings for the head entity,
relation, and tail entity, respectively. The self-adversarial negative

sampling distribution is defined as

p(e o) = O T )
ST, explaf (el el)

@)

where « is the temperature to control the smoothness of the softmax
function. As a result, negative samples with lower scores are assigned
smaller weights for optimization as they are well-trained already, and
the model can focus on optimizing the hard cases.

Stage 2: Entity type prediction. In this stage, we fine-tune the
entity embeddings and train the type embeddings using only typing
triples. We adopt a loss similar to (6) to predict the missing entity

types.

‘Ctp = - IOg(U(f(evpv t)))

ki 8
=S ble s ) loglo(—fe Bt
=1

where (e, p;, t;) is a negative sample for entity type prediction gen-
erated by replacing the valid types with a random type ¢, and the

corresponding auxiliary relation p}. The auxiliary relations are as-
signed based on mappings, p = Auz(t) and p; = Auz(t}). Since
the number of entity types is much fewer than the number of entities
(i.e. |[T] << |€]), false negatives, (i.e. (e, p},t;) € TG) are more
prevalent for entity-type prediction. To address this issue, we adopt
false-negative-aware negative sampling distribution introduced in [17].
It can be written as

p(e,pgvt;):m_m27 (9)
where
x = o(—f(e,pi, ;). (10)

Then, negative samples with the highest scores are assigned lower
weights as they are possibly false negatives. Similar to the self-
adversarial loss, negative samples with the lowest scores are already
well-trained, so they are assigned smaller negative sampling weights.

Table 2: Dataset statistics.

FB15k-ET  YAGOA43k-ET

# entities 14,951 42,334
g # relations 1,345 37

# triples 483,142 331,686

# types 3,584 45,182

# train 136,618 375,853

# valid 15,848 43,111

TG  #test 15,847 43,119

# p-bijective 3,584 45,182

# p-taxonomy &9 -

# p-efficient 54 10

4 Experiments
4.1 Experimental Setup

Datasets. We adopt two KGET datasets, FB15k-ET and YAGO43k-
ET [15], for evaluation. FB15k-ET is derived from a link prediction
dataset, FB15K [2], extracted from Freebase [1] by adding typing
tuples. Freebase contains general relations between real-world enti-
ties. YAGO43K-ET is derived from another link prediction dataset,
YAGO43k [14], extracted from YAGO [13] by adding typing tuples.
There are mostly attributes and relations for persons in YAGO. The



Table 3: Results on KGET datasets, where the best performance in each column is shown in boldface, and the second-best performance is

underlined.

Models FB15KET YAGO43KET

MRR H@l H@3 H@l0 MRR H@l H@3 H@I10
TransE [2] 0.618 0.504 0.686 0.835 0427 0304 0497 0.663
RotatE [19] 0.632 0.523 0.699 0.840 0462 0339 0.537 0.695
CompoundE [4] 0.640 0.525 0719 0.859 0480 0364 0.558 0.703
ETE [15] 0.500 0385 0.553 0.719 0230 0.137 0.263 0422
ConnectE [26] 0.590 0.496 0.643 0.799 0280 0.160 0.309 0.479
CET [17] 0.697 0.613 0.745 0.856 0.503 0.398 0.567 0.696
ConnectE-MRGAT [27] 0.630 0.562 0.662 0.804 0.320 0.243 0.343 04832
AUET [29] 0.620 0.517 0.677 0.821 0350 0.244 0413 0.565
AsyncET-TransE (Ours) 0.659 0.552 0.729 0.859 0452 0341 0518 0.684
AsyncET-RotatE (Ours) 0.668 0.564 0.735 0.864 0471 0359 0556 0.717
AsnycET-CompoundE (Ours) 0.688 0.581 0.755 0.885 0492 0.380 0.574 0.721

dataset statistics are summarized in Table 2, where p-bijective, p-
taxonomy, and p-efficient denote the auxiliary relations obtained from
the bijective assignment, the taxonomy-based assignment, and the ef-
ficient assignment described in Sec. 3.2, respectively. Only FB15k-ET
contains taxonomy labels for the types.

Implementation details. We select three representative KGE meth-
ods as the scoring functions to evaluate the effectiveness of AsyncET.
Specifically, we select TransE [2], RotatE [19], and CompoundE [4].
TransE models relations as translation in the vector space. It has sev-
eral limitations in expressiveness since it does not model symmetric
relations well. RotatE models relations as rotation in the complex em-
bedding space. CompoundE is a recently proposed KGE method that
generalizes the majority of distance-based methods by including com-
pounding geometric transformations such as translation, rotation, and
scaling. It also operates in the complex embedding space. The scoring
functions of three KGE methods for AsyncE are written below.

e TransE [2]:

f(ehead7 r, etail) _ head

7= e b — et

where -y is the margin. It’s a hyperparameter that can be tuned.
e RotatE [19]:

f(ehead’,r‘7 etail) = Heheud op — etailH7

where o denotes the rotation operation in the complex embedding
space.
e CompoundE [4]:

f-(ehead7 r

where Ty, R(6:), Sy denote the translation, rotation, and scaling
operations in CompoundE, respectively.

") =~ — | Ty -R(0:) - S: - ©

head tail
—€ ||7

For both datasets, we select the best hyper-parameters from a certain
search space under the embedding dimension d = 500 based on the
performance of the validation set for entity type prediction. The search
space is given below:

Number of negative samples npeq € {128,256, 512};
Learning rate [r € {0.01,,0.001,,0.0001};

Softmax temperature o € {0.5,1.0,0};

Margin v € {8.04,12.0,16.0,20.0,}.

The hyper-parameter settings adopted for FB15k-ET and YAGO43k-
ET are marked with * and ¢, respectively. We also conduct an ablation
study on the performance against the number of alternate steps be-
tween two training stages in asynchronous embedding learning in
Sec. 4.4. Based on the study, we alternate two training stages every
16 steps for both datasets. All experiments are conducted using one
NVIDIA Tesla P100 GPU.

Evaluation metrics. For the KGET task, the goal is to predict
the missing types given an entity, i.e. (e, 7). However, in AsyncET,
we convert the tuples into triples so the test queries become (e, 7, 7).
Since each entity type is only modeled by one auxiliary relation,
we evaluate the joint plausibility f(e,p’,t'), Vt' € T, where p’ =
Auz(t') for a given query. The valid entity types should be ranked
as high as possible compared to all other candidates. Following the
convention in [2], we adopt the filtered setting, where all entity types
in the KG serve as candidates except for those observed ones. Several
commonly used ranking metrics are adopted, including the Mean
Reciprocal Rank (MRR) and Hits @k (k=1, 3, and 10).

4.2 Main Results

The experimental results on two KGET datasets are given in Ta-
ble 3, models are clustered into three groups: 1) KGE methods
trained using a single auxiliary relation (i.e., hasType), 2) other type-
embedding methods and models using graph neural networks, 3) pro-
posed AsyncET with TransE, RotatE, and CompoundE scoring func-
tions. For group 3, we report the best performance using p-bijective,
p-taxonomy, or p-efficient. Detailed comparison of the effects of dif-
ferent auxiliary relations will be discussed in Sec. 4.3. We have the
following observations from the table. AsyncET is significantly better
than KGE methods trained with only one auxiliary relation. CET
performs better in exact matches (i.e. H@1) than AsyncET since they
adopt a graph neural network to learn entity embeddings from neigh-
bors. However, the performance of some type-embedding methods,
such as ETE and ConnectE, is much worse than that of AsyncET for
both datasets since they do not encode the neighboring information
effectively. Recent methods, such as CET, ConnectE-MRGAT, and
AttET, adopt attention mechanisms to obtain context-aware entity em-
beddings to predict the missing types. In AsyncET, entities’ attributes
are encoded through auxiliary relations and asynchronous training.
AsyncET using scoring functions of TransE, RotatE, and CompoundE
outperforms attention-based methods in all metrics except for CET.



Table 4: Ablation study on asynchronous representation learning and different auxiliary relations. The MRR performance is reported. The best

performance in each column is shown in boldface.

FBISKET YAGO43KET
Training Aux. Rel. TransE RotatE CompoundE TransE RotatE CompoundE
Syn. hasType 0.618 0.632 0.640 0.427 0.462 0.480
Syn. p-bijective 0.532 0.534 0.581 0.362 0.388 0.407
Syn. p-taxonomy 0.545 0.550 0.603 - - -
Syn. p-efficient 0.565 0.564 0.625 0.418 0.438 0.455
Asyn. hasType 0.621 0.624 0.638 0.443 0.458 0.474
Asyn. p-bijective 0.659 0.668 0.688 0.391 0.418 0.442
Asyn. p-taxonomy 0.633 0.641 0.664 - - -

Asyn. p-efficient 0.654 0.661 0.682 0.452 0.471 0.492

1054 the efficient assignment on the dataset with more entity types, e.g.

YAGOA43KET. In datasets with many entity types, the bijective as-
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Figure 4: The MRR performance as a function of the number of
alternating rounds between two stages in asynchronous representation
learning.

Furthermore, AsyncET-CompoundE can even outperform CET in
H@3 and H@10.

4.3 Ablation Study

To analyze the effectiveness of asynchronous training and different
auxiliary relation assignments, we conduct an ablation study in Ta-
ble 4, where the MRR performance of several methods for two datasets
is reported. We compare the following:

e Synchronous vs. asynchronous training;

e Single auxiliary relation hasType vs. multiple auxiliary relations
with p-bijective, p-taxonomy, and p-efficient designs;

e TransE, RotatE, or CompoundE scoring functions.

As shown in the table, asynchronous training consistently outper-
forms synchronous training. The performance improvement of asyn-
chronous training when using only one auxiliary relation, hasType,
is not significant since the second stage of the embedding learning
is trained on a single-relational graph. When there are multiple aux-
iliary relations, mixing typing triples with original factual triples in
embedding training using the synchronous framework still yields poor
performance. This could be attributed to the fact that KGE methods are
difficult to train when there are too many relations. The performance
improves significantly when we decompose the training process into
two stages under the asynchronous framework.

When using multiple auxiliary relations to model the typing re-
lationship, the bijective assignment works well in the dataset with
fewer entity types, e.g. FB15k-ET. However, it performs worse than

4.4 Number of Alternating Rounds

In asynchronous learning, we alternate between the link prediction
stage (Stage 1) and the entity type prediction stage (Stage 2) after
a few stochastic gradient descent steps. The link prediction loss in
Eq. (6) and the entity type prediction loss in Eq. (8) are minimized in
Stage 1 and Stage 2, respectively. The training process begins with
Stage 1 and switches to Stage 2 after /N, 1 stochastic gradient descent
steps. Similarly, it conducts N o stochastic gradient descent steps and
then switches back to Stage 1. We call one entire cycle of performing
Stage 1 and Stage 2 once an alternating round. In our experiments,
we set Ng1 = N2 = N, and use N, to denote the number of
alternating rounds.

We plot the MRR performance on YAGO43KET using TransE as
the scoring function as a function of N5 and N, in Fig. 4 in the
green line. We conduct experiments using N, steps, with Ny =
1,16, 256,4096, 65536 in one round. Besides, we set N; X N, =
65, 536. The relation of N5 and N, is shown by the red line. The
smaller N, being set means the stage alternation is more frequent. We
see that the performance is better when alternating between the two
stages more frequently. Clearly, asynchronous training contributes
better entity and type embedding quality when there are more frequent
interactions between the entity and type embedding spaces.

We also plot the training loss curves as a function of alternating
rounds in Fig. 5. It shows that the training loss can be lower with
more alternating rounds. In addition, both the link prediction loss
and the entity type prediction loss are successfully reduced during
the training. In other words, the two training stages are mutually
beneficial. When alternating between the two stages only once, as
shown in Fig. 5 (c), the loss curves go down slowlier than the other two
cases. Thus, more alternating rounds help convergence. We conclude
that alternating between two stages can fine-tune entity and type
embeddings to approach the global optimal in optimization.
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Figure 5: Training loss curves with respect to different numbers of alternating rounds.

Table 5: Inference time and memory complexity of KGET methods.

Model Inference time complexity Memory complexity
ConnectE [26] O(Td%dy) O((E + R)d. + Tdy + d.d;)
R-GCN [18] O(TBL(E + T)d?) O((E+R+T)d+ BLd*> + BLR)
WGCN [28] O(TL(E + T)d?) O((E+R+T)d+ Ld*> + LR)
CET [17] O(T(Td* +2T)) O((E + R+ 3T)d)

KGE Models o(Td) O(E+R+T)d)
AsyncET (Ours) 0(2T4d) O(E+R+T+ P)d)

4.5 Complexity Analysis

We conduct complexity analysis on the inference time and the number
of model parameters for several representative methods in Table 5,
where d, E/, R, T, and P denote the embedding dimension, numbers
of entities, relations, entity types, and auxiliary relations, respectively.
For ConnectE, the embedding dimensions for entities and types are
denoted as d. and d;, respectively. For GCN-based methods, B is the
number of bases to decompose the propagation matrix in GCN layers,
and L is the number of GCN layers. We see that KGE methods are the
most efficient methods in terms of inference time complexity under the
same embedding dimension. ConnectE is also an embedding-based
method but it tries to learn a matrix to connect the entity and type
space. Thus, its time complexity and number of model parameters
are proportional to d?, which are larger than KGE methods. The
complexity of GCN methods is correlated with the number of layers
and the number of nodes in the graph. As a result, the inference time
complexity is proportional to (E + T') Ld?, which is highly inefficient
in testing. The complexity of AsyncET is similar to KGE methods
except it needs additional model parameters to store embeddings
for auxiliary relations. For time complexity, AsyncET requires twice
the inference time as that of KGE methods since it considers joint
probabilities f(e,p’,t’) in candidate ranking. KGE methods only
need to calculate the conditional probabilities f(e,t’ | hasType).

4.6 Qualitative Analysis

We show some examples of predicted types in Table 6. In all three
examples, the groundtruth ranks among the top three. In the first
example, for entity Mihail Majearu, the model can successfully rank
the groundtruth at the top one. In addition, the top three predicted
types are all persons and the 2nd prediction is also related to football.
In the second example, for entity David Cross who is a comedian, the
model can rank the groundtruth at the top one again. The other two
entity types are also relevant to the entity. They are valid types. In
the last example, for entity Zhejiang, although the groundtruth only

Table 6: Top 3 predicted entity types by AsyncET for entities in
YAGO43KET. Groundtruth is marked in boldface.

Entity Top 3 Type Predictions
Romanian footballers
Mihail Majearu Alkmaar players

People from Glasgow

Jewish actors
21st-century American actors
American humorists

David Cross

Cities in Zhejiang
Provincial capitals in China
Administrative divisions of China

Zhejiang

ranks as the third, the first two predicted types are both relevant to the
entities. Note that Zhejiang is a province instead of a city in China.
The granularity of the entity is not predicted correctly in the top two
choices.

5 Conclusion and Future Work

Multiple auxiliary relations were proposed to solve the KGET task in
this work. Three methods for the design of auxiliary relations were
compared. Among the three, the efficient assignment is recommended
since it is scalable to datasets containing many entity types. In addition,
asynchronous embedding learning was proposed to achieve better
entity and type embeddings by predicting missing links and types
alternatively. It was shown by experimental results that AsyncET
outperforms SOTA in H@3 and H@10 with much lower inference
complexity and fewer model parameters. As future extensions, we
will investigate how the sparsity of the typing information affects
the performance of KGET methods. We aim to not only develop a
time- and parameter-efficient model, but achieve less performance
degradation when trained with fewer labeled entity types.
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